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Abstract: The total electronic energies
of the six electrons per atom (eÿ per
atom) alloys W, TaRe, HfOs, and YIr
and the seven electrons per atom alloys
Re, WOs, TaIr, HfPt, and YAu have
been calculated in the local density
approximation of density functional
theory. When one considers common
alloy structures such as atomically or-
dered variants of the body-centered
cubic, face-centered cubic, or hexago-
nally closest packed structures and plots
the total electronic energy as a function
of the unit cell parameter, one finds for
both the six and seven electrons per
atom series energetic isosbestic points.

An energetic isosbestic point corre-
sponds to a critical value of the size
parameter for which all members of the
6 or 7 eÿ per atom series of compounds
have nearly identical total electronic
energy. Just as in spectroscopy, where
the existence of such isosbestic points is
the hallmark of two compounds present
in the mixture, an energy isosbestic
point[1, 2] implies there are just two
separate energy curves. For both series

it is found that the total electronic
energy can be viewed as the weighted
sum of a purely covalent term and a
purely ionic term. Two semi-quantitative
models are proposed to account for
these two separate energies. In the first
model the total energy is viewed as the
sum of the elemental structural energy
plus an ionic energy based on the Born ±
Mayer ionic model. In the second model
one considers within the confines of m2-
Hückel theory the evolution of the total
electronic energy as the Coulombic Hii

integrals change in value.
Keywords: ab initio calculations ´
alloys ´ bond theory ´ electronic
structure ´ solid-state structures

Introduction

The concept of the metallic-covalent/ionic bond lies at the
heart of the chemistry. The idea rests on the following
premises.[3±8] Pure covalent or pure metallic bonds can be
understood by simple valence bond or molecular orbital
theory. Pure ionic bonds are electrostatic in nature. In binary
systems both pictures contain some fraction of the truth. The
fraction itself depends on the electronegativity difference
between the two elements. While this picture is useful in a
qualitative understanding of bonding, it is not clear whether it
is equally useful quantitatively. For example, in quantitative
valence bond theory,[3] one associates one valence state with
the covalent bond, a second state with the ionic bond, a
resonance term for the interaction between these two states,
and from the combination of these three one calculates the

covalent ± ionic bond energy. Not only must a resonance
energy be calculated but one also has the limitation that for
many systems, such as metals, it is diffcult in practice to
calculate full valence bond energies. A simpler quantitative
picture would be one in which the total energy of a binary
system would be the weighted sum of the covalent and ionic
energies of the system and in which both could be understood
separately. For example we might expect that in Zintl
compounds,[9, 10] systems in which there is a coexistence of
primarily covalent and primarily ionic bonds, such a decom-
position would be possible. The questions remain, are there
other types of compounds for which such a decomposition is
possible, and if so what is a convenient way to search for such
families?

One approach to these questions is to find a series of
compounds that differ primarily in either just the covalent or
just the ionic energies. Differences in energies would there-
fore correspond to either purely covalent or purely ionic
terms. The situation would be analogous to what one finds in
spectroscopy when one measures the spectra of a series of
mixtures. Just as in spectroscopy, the existence of isosbestic
points is the hallmark of just two compounds present in the
series of mixtures, an energy isosbestic point would be
characteristic of two separate energy curves. Thus the ques-
tion posed above, of whether the metallic-covalent/ionic bond
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can be thought of as the sum of a covalent energy and an ionic
energy, can be reduced to a search for isosbestic points in
related series of compounds.

In this paper we show that just such energy isosbestic points
are found for third-row transition metal alloys. In particular
we used local density approximation density functional theory
(LDA-DFT) to calculate the total electronic energy as a
function of the system�s size.[11±23] We studied a series of pure
elements and binary compounds in which the average number
of valence electrons per atom (eÿ per atom) is constant. Thus
W, TaRe, HfOs, and YIr each have an average of six electrons
per atom. For the pure element W, bonds are purely metallic-
covalent in character. Differences in energy between pure
tungsten and the three binary compounds are due largely to
the differences in electronegativities between the binary pair
of atoms. Across a variety of structures, both those plausible
for metal alloys, such as atomically ordered variants of face-
centered cubic (fcc), body-centered cubic (bcc), and hexag-
onally closest packing (hcp), and those implausible for alloys,
such as the rock salt structure and molecular dimers,
isosbestic-type points are found across this series of four
compounds. We similarly study series of compounds in which
either the atomic parameters or unit cell parameters are
continuously varied. In these cases we find isosbestic lines or
surfaces. Equally clear isosbestic points are found for these
same structures where one considers the parallel seven
electrons per atom series, Re, WOs, TaIr and HfPt. These
results strongly suggest that for the third-row transition metal
alloys the total electron energy can be decomposed into
metallic-covalent and ionic parts. We interpret these two
separate energies by using both the Born ± Mayer model for
the ionic term[24] and m2 molecular orbital theory[25±28] for both
covalent and ionic contributions.

Computational Methods

LDA-DFT: The total electronic energy is calculated iteratively from
Equation (1) in which yi are the doubly occupied orbitals, 1(r) is the
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electronic density, Vion is the electrostatic ion ± electron potential, Eion is the
electrostatic ion ± ion potential, and Exc is the exchange-correlation func-
tional. In the LDA approximation the Exc term is set [Eq. (2)], in which exc

is the exchange correlation energy of a homogeneous electron gas.

Exc[1(r)]� � exc(r)1(r)dV (2)

Calculations were carried out with the Vienna Ab Initio Simulation
Package (VASP)[29±32] by means of the ultrasoft Vanderbilt pseudopoten-
tials[33] provided by the package. Plane-wave basis sets were used in the
high-precision mode. This corresponds to plane-wave energy cut-offs of
186.9, 218.3, 235.3, 242.4, 252.0, 247.8, 239.2, and 224.6 eV for the third-row
elements, starting with Hf and ending with Au. For Y the energy cut-off was
149.1 eV. The Brillouin zone sampling was done by Monkhost-Pack[34] k
points grid (15� 15� 15 mesh). Partial occupancies of wavefunctions were
made based on the tetrahedron method with Blöchl correction.[35] As a test
of the numerical accuracy of our LDA-DFT calculations we also
considered the general gradient approximation (GGA),[36] with the GGA

pseudopotentials provided by the VASP package, as well as different
partial occupancy algorithms. For these latter tests the algorithms
considered include Fermi smearing, Gaussian smearing, and an order one
Methfessel-Paxton correction.[37±39] The systems studied for these tests were
those of W and TaRe, with a two atom cell : one atom at the origin and the
second at (x,y,1/2) for which x and y range in value from zero to one-half.
The different total electronic energies from all the test calculations were
within 0.005 eV per unit cell of the ones reported in this paper.

m2-Hückel theory : In this tight-binding method[40±48] the total energy, ET, is
expressed by Equation (3) in which U(r) is a hard-core interatomic

ET(r)�U(r)ÿV(r) (3)

repulsion energy, V(r) is an attractive bonding energy, and r is a parameter
dependent on the size of the system. The total energy ET can also be given
by Equation (4) in which the integrals represent the repulsive and the

ET�g
� 1ÿ1(EÿEave)21(E,r)dE� � EFÿ1E1(E,r)dE (4)

attractive energy, respectively. Here 1(E,r) is the electronic density of the
valence bands, EF is the Fermi energy, Eave is the average energy of the
electronic density of states, and g is a proportionality constant. The density
1(E,r) is found from the diagonalization of the Hamilton matrix. Diagonal
elements, Hii, are set equal to prescribed Coulombic integral values, while
off diagonal elements are based on the Wolfsberg-Helmholz approxima-
tion,[49] Hij� 1/2KSij(Hii�Hjj). The parameter K is generally set to 1.75 and
Sij is the overlap integral between the atomic orbitals i and j. Atomic
orbitals are assumed to be single or double z expansion Slater type orbitals.
For the elemental systems the atomic parameters are the same ones used
effciently in previous work on transition metal alloys.[27, 50] These are the
parameters for Fe, Hii(4s)�ÿ9.10 eV, Hii(4p)�ÿ5.32 eV, Hii(3d)�
ÿ12.60 eV; z(4s)� z(4p)� 1.9, z1(3d)� 5.35 (0.5505), z2(3d)� 2.00
(0.6260). The parameter z was then determined from the condition that
the total energy, ET, should have its global minimum at the experimental
system size, r� 2.88 � for bcc Fe. For the cases of six and seven electrons
per atom, representing W and Re, the z parameters were determined to
equal 0.6747 and 0.6546, respectively.
In this paper we model heteroatomic systems with two atoms of different
electronegativities by changing Coulombic integrals while keeping the
Slater exponents constant. We adopt the following simple scheme. The
difference in Hii values between 4s, 4p, and 3d levels is a fixed constant:
Hii(4s)ÿHii(3d)� 3.50 eV and Hii(4p)ÿHii(3d)� 7.28 eV. We assume that
the difference in Hii values for the two atom types is 6 eV. There are,
therefore, two undetermined numbers: the average Hii value for the two
different atomic 3d orbitals and the proportionality constant g.[51, 52]) We
find these values by setting the isosbestic point for m2-Hückel calculations
to be the same as that found in LDA-DFT and by requiring that the
asymptotic electronic energy at large interatomic separation is the same as
that for the earlier homoatomic calculation. For the six electrons per atom
systems the more electronegative element has an Hii(3d) of ÿ13.80 eV,
while Hii(4s) and Hii(4p) are ÿ10.30 and ÿ6.52 eV, respectively. The
corresponding Hii parameters for the more electropositive atoms are
exactly 6 eV higher in energy, that is, ÿ7.80, ÿ4.30, and ÿ0.52 eV. For the
systems with seven electrons per atom the two Hii parameters for the more
electronegative atom are ÿ14.45, ÿ10.95, ÿ7.17 eV. For the more electro-
positive atom these integrals are ÿ8.45, ÿ4.95, and ÿ1.17 eV. The values
for the parameter g for the heteroatomic six and seven electron systems
were found to be 0.760 and 0.692.

Born ± Mayer theory : In this model [Eq. (5)][24] for which we assume that

Etotal�ECoulombic�B
X

j=i

eÿarij (5)

all the atom sites corresponding to one atom are of charge �1 and those
corresponding to the other atom are ÿ1, and in which ECoulombic is the
electrostatic energy, rij are the distances between nuclei i and j, and B and a
are constants. We find the values of B and a by requiring for TaRe that the
energy is minimized at the experimentally observed cubic a axis value of
3.26 �. As discussed below we determine the values B and a by fitting to
LDA-DFT calculations of TaRe with two atoms, at (0,0,0) and (x,y,1/2); 0�
x,y� 0.5 in a metrically cubic cell. This leads to the values of and a of 571.9
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and 2.96, respectively. As we have arbitrarily assumed that charges are �1,
the total energy calculated by this method are in effect in arbitrary energy
units. To derive real energy units one multiplies Etotal by a constant roughly
equal to the charge on the cationic site.

Results and Discussion

Survey of isosbestic points : We consider first the series W,
TaRe, HfOs, and YIr. Ta and Re are the pair of elements
before and after W in the periodic table, Hf and Os are the
pair a step further removed, and Y and Ir are yet another step
apart. The element Y is chosen instead of La as the atomic
radius of Y more comfortably fits the observed progression of
size in going from Y to Hf, Ta, W, and so forth. This is related
to the lanthanide contraction.[53, 54]

In each of these four compounds there is an average of six
valence electrons per atom, while the electronegativity differ-
ences for the four compounds from W to YIr increases from
0.0 to 0.4, 0.9, and 1.0 on the Pauling scale.[3] At room
temperature and pressure each of these compounds is stable
in the bcc or CsCl structure, illustrated in Figure 1.[55] The total

Figure 1. Crystal structures of CsCl, NaCl, WC, CuAu(i), and MnHg. For
CuAu(i) an alternative choice of unit cell, which relates the structure to
MnHg and CsCl, is shown.

electronic energy of these structures as a function of the a
lattice constant is shown in Figure 2. Tungsten has the deepest
energy minimum, and the energy minima become increasingly
shallow across the series.

All four curves come to a common isosbestic point for an a
lattice constant of 2.27 �. The deviation along the abscissa
from an ideal isosbestic point is 0.01 �. The isosbestic point
value of 2.27 � is significantly shorter than the equilibrium
lattice constants for YIr and W, 3.400 and 3.165 �, respec-
tively.[55] It therefore corresponds to a distance that is
unrealistically short when compared with experimentally
observed distances. One might, therefore, at first not ascribe
any importance to the existence of this equivalence point.
However, it can be seen that the softness of the energy curves
at the unrealistic distances to the left of the isosbestic point

Figure 2. Total electronic energy of binary transition metal alloys in the
CsCl structure as a function of the a lattice parameter. W, TaRe, HfOs, and
YIr are represented by solid, dotted, dashed and dash-dotted lines,
respectively. The insert shows the region of the isosbestic point.

corresponds quite closely to the softness found for the
experimentally pertinent distances to the right of this point.

Furthermore, all such energy curves can be fit approx-
imately to the Rose universal energy curve.[56] The latter is a
three parameter curve found to exemplify an energy ± length
relationship for a large number of systems. As all Rose curves
can be described by three parameters and as all the curves in
Figure 2 share a common point, we must be restricted to just
two parameters in describing this sub-family of the Rose
curves. It turns out that this parameter subset may be viewed
as a two-dimensional subspace. Basis functions for the
subspace may be taken to be the W curve and the difference
in energy between the W curve and the YIr curve. In Figure 3
we show linear combinations of the W and YIr curves fit to
reproduce the TaRe and HfOs LDA-DFT results. A compar-
ison of Figures 2 and 3 show that these linear combinations

Figure 3. Linear combinations of the LDA-DFT electronic energy W and
YIr curves (solid and dash-dotted lines) similar to the LDA-DFT TaRe and
HfOs energy curves of Figure 2.

provide a qualitative fit to the full LDA-DFT results. In the
same manner we may consider other reasonable alloy
structures. For example, we may consider the CuAu(i) ordered
variant of fcc and the WC variant of the hcp packing. These
structures are also illustrated in Figure 1. While CuAu(i) is of
tetragonal symmetry, we have chosen a metrically cubic unit
cell (also shown in Figure 1) for our calculations. Similarly in
our calculations of ordered hcp phases we choose the ideal c/a
ratio of 1.633, the ratio at which each atom has twelve
equidistant nearest neighbors. In Figures 4 and 5 for both the
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Figure 4. Total electronic energy of binary transition metal alloys in the
CuAu(i) structure, an ordered variant of fcc structure, as a function of the a
lattice parameter. See caption of Figure 2 for curve definitions.

Figure 5. Total electronic energy of binary transition metal alloys in the
WC structure, an ordered variant of hcp structure, as a function of the a
lattice parameter. See caption of Figure 2 for curve definitions.

CuAu(i) and WC structures, we plot the total electronic
energy as a function of the lattice parameters. As in the CsCl
study we find the deepest minima for W and the shallowest for
YIr. Again nearly perfect isosbestic points are observed (see
inserts of Figures 4 and 5). The error for the former is
approximately 0.02 �, while for the latter it is 0.03 �.

Finally, for the sake of interest we consider two structures
not compatible with structures ordinarily found for transition
metal alloys. The first one is the rock salt structure in which
every atom has only six nearest neighbors, half that found in
ordinary transition metal1 alloys. The second one is the
molecular structure composed of a dimer of transition metal
atoms. Here the coordination number is just one. As the
inserts of Figures 6 and 7 show, the deviation from ideal

Figure 6. Total electronic energy of binary transition metal alloys in the
NaCl structure as a function of the a lattice parameter. See caption of
Figure 2 for curve definitions.

Figure 7. Total electronic energy of transition metal dimer molecules as a
function of the interatomic distance a. See caption of Figure 2 for curve
definitions.

isosbestic points is quite large for these systems. The error is
greatest for the case of the molecular dimer, 0.3 �. These
results suggest that the occurrence of an energy isosbestic
point holds best for high coordination number structures as
are found in true alloy structures. Isosbestic points will be less
ideal and even non-existent for insulating structures with
lower coordination number.

The CsCl, CuAu(i), and MnHg structures : Among the simple
structures most related to transition metal alloys with 6 ± 7 eÿ

per atom are the tetragonal CuAu(i) and MnHg structures.[55]

Both structures can be described in a tetragonal cell with just
two atoms per unit cell (see Figure 1). One atom type is
located at the corner of the unit cell, while the second atom is
at the body center. The difference in the structures comes
from the c/a ratio. For CuAu(i) this ratio is near

���
2
p

and, hence,
CuAu(i) is an atomically ordered variant of fcc, while for
MnHg the c/a ratio is near unity and, thus, MnHg is a slight
tetragonal distortion of the cubic CsCl structure. Metal alloys
with 6 ± 7 eÿ per atom found in the CuAu(i) structure are TiRh,
TiAg, VRh, VIr, NbRh, and NbIr, while for the MnHg type
examples include LaAg, LaCd, TbCu, TiIr, NbRu, and
TaRu.[55] These two structure types are, therefore, members
of a more general structure type, a primitive tetragonal cell
with one atom type at the corner and the second atom in the
body center. In this amalgamated structure type there are just
two variable parameters, the a and c axis lengths.

In the previous section we considered structure types with a
single structural parameter, either the cell axis or the bond
length. For each structure type we found energetic isosbestic
points. With the CuAu(i)/MnHg structure at each c/a ratio one
may find a corresponding single isosbestic point. In Figure 8
we show two such isosbestic points for the 6 eÿ per atom
series, W, TaRe, HfOs, and YIr for c/a� 0.80 and c/a� 1.20.
Together with the earlier 6 eÿ per atom results for CsCl (c/a�
1.00, Figure 2) and the ordered fcc structure (c/a� 1.41,
Figure 4), these results suggest that for all c/a ratios there is
an isosbestic point. The locus of these individual isosbestic
points is a one-dimensional curve, an isosbestic line. This line
is found at cell volumes slightly less than 12 � per unit cell. In
Figure 9 we plot the electronic energy as a function of the c/a
ratio for the fixed volume of 11.775 �. Were this volume to
correspond exactly to the isosbestic line, all four curves would
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Figure 8. Total electronic energy of binary transition metal alloys in the
MnHg structure as a function of the a lattice parameter. The ratio between
the c and a axes is arbitrarily fixed at the values of 0.8 (top) and 1.2 (bottom).

Figure 9. The electronic energy at a fixed volume of 11.775 � as a function
of the c/a ratio.

lie on top of one another. Between c/a values ranging from
0.75 to 1.50 the curves deviate from one another by 0.3 to
0.5 eV. For c/a ratios below 0.75 the errors become larger. This
result correlates to our findings in the previous section. There
we found isosbestic points for true alloy structures were more
perfect than those for lower coordination geometries. For c/a
ratios from 0.8 to 1.5, the number of atoms within metallic
bonding distances range from 10 to 14. For unreasonably low
c/a ratios of 0.6, however, nearest neighbors are only along the
c axis. At such low c/a ratios, the structure can be viewed
primarily as polymeric, with two coordinate metal chains
running parallel to the c axis. Similarly at unreasonably high
c/a ratios of 1.7, nearest neighbors are only in the ab plane. The
structure is primarily a square net, that is, each atom has only
four nearest neighbors. It is for such chemically unreasonable
alloy geometries that the validity of the isosbestic point begins
to break down.

A comparison of the individual surfaces is instructive. In
Figure 10 we plot the electronic energy of the four compounds

Figure 10. Electronic energies of the 6 eÿ per atom compounds plotted as
contour maps. The two variables are the c to a axes ratio and the cell
volume. The latter is expressed as the ratio of the cell volume to Vmin, the
volume of the structure at the global energetic minimum. Thus points
corresponding to the experimentally observed bcc elemental structures are
at r and V/Vmin both equal to one.

W, TaRe, HfOs, and YIr as contour maps. In these graphs the
abscissa is the ratio of the c and a lattice parameters and the
ordinate is the ratio of unit cell volume to Vmin, the cell
volume corresponding to the global energy minimum struc-
ture. Both abscissa and ordinate are therefore unitless and
allow for ready comparison of experimental systems of
different equilibrium size. In all four cases shown in Figure 10
the global minimum is found for a c/a ratio of one. This
corresponds to the bcc or CsCl structure. It is indeed this
structure that is observed experimentally. Of greater interest
perhaps is the local minimum found for c/a ratio of 1.7 for
elemental W. In the next compound in the series, TaRe, this
local minimum is much softer and has shifted to a c/a ratio of
1.6. In the remaining two systems this minimum has dis-
appeared. For YIr, besides the global minimum, the overall
electronic surface is essentially featureless.

We may rationalize these results in two ways. In the first
approach one uses the Born ± Mayer model of ionic inter-
actions. Here the attractive potential is based on the
Coulombic electrostatic interaction, while the repulsive
potential is a hard core potential, modeled as an exponential
term, eÿar. In such a model, structures are optimal when one
brings opposite charges close together, while keeping like
charges far apart. The model generally favors high-symmetry
over low-symmetry structures. With the MnHg/CuAu(i)
structure type the optimal structure is for c/a� 1.0 with cubic
symmetry. At this value, the structure is actually in the CsCl
arrangement in which all first nearest neighbors are between
atom types of opposite charge and only second nearest
neighbors are of like charge. We therefore expect in an ionic
model both that the CsCl structure would be the energetically
preferred structure and that electronic energy surface would
be quite smooth.
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In the upper left corner of Figure 11 we show the results of
such a Born ± Mayer calculation. The overall shape is the one
expected. The surface is quite smooth, and there is only a

Figure 11. Linear combinations of the ionic Born ± Mayer energy,
EBorn±Mayer (upper left contour), and the covalent DFT energy of tungsten,
WDFT. The results qualitatively correspond to the DFT energies of TaRe,
HfOs, and YIr shown in Figure 10.

single minimum, which corresponds to the CsCl structure.
Comparing the Born ± Mayer surface of Figure 11 with the
energies of the W, TaRe, HfOs, and YIr series in Figure 10, we
see that the agreement between the ionic model and the
actual LDA-DFT electronic energy surfaces is best for the
more ionic YIr and HfOs systems and worse for the non-ionic
W system. The TaRe potential can then be thought of a linear
combination of the purely metallic-covalent W surface and
the purely ionic Born ± Mayer energy surface. In Figure 11 we
show that such linear combinations do result in energy
surfaces similar to these of TaRe, HfOs, and YIr. Thus the
TaRe DFT surface of Figure 10 is well approximated by the
linear combination of 0.81 times the W DFT surface and 0.19
times the Born ± Mayer surface, as is shown in the upper right
of Figure 11. Agreement is worse for YIr, which is best
modeled as 0.44 times the W DFT surface plus 0.56 times the
Born ± Mayer energy surface as is shown in the lower right of
Figure 11.

One may however take an alternative approach in ration-
alizing the results of Figure 10. In this approach we use a tight-
binding model to calculate the metallic-covalent bond energy.
We use here the m2-Hückel model, a model in which a
repulsive energy, proportional to the variance of the valence
electron density of states, is added to the attractive Hückel
Hamiltonian. The model has been proven successful in many
areas in which the understanding of the electronic structure is
of interest. It has given intelligible insights into the structural
stability of elements, organic and organometallic molecules,
cluster compounds,[57] and networks of main group interme-
tallics.[58] Recently the m2-Hückel model has been used in

rationalization of alloy structures,[59] understanding of the
electronic structure and stability of thermoelectrics,[60] or of
alloys at high pressure.[61]

This model is described in the section on Computational
Methods. As m2-Hückel theory atomic parameters have not
been established for third-row transition elements, we use the
previously characterized first-row parameters. We choose the
equilibrium size to be the one that corresponds to bcc.
However, as we plot in our contour map c/a at V/Vmin, two
unitless quantities, the results from the first-row calculations
can be directly compared to the third-row LDA-DFT results.

Using this model results in the energy surface shown on the
left side of Figure 12. For c/a values above 0.7 the m2-
Hamiltonian gives an electronic energy surface in partial
agreement with the LDA-DFT results. The m2-Hamiltonian

Figure 12. m2-Hückel energies for transition metal alloys in the MnHg
structure type an element (DHii� 0 eV) and a binary compound (DHii�
6 eV) each with an average of 6 eÿ per atom. The results are in partial
agreement with the DFT energies of W and TaRe shown in Figure 10.

has a global minimum for c/a� 1.0, the CsCl structure, and a
second local minimum at the same volume as the global
minimum but for c/a� 1.6. For values below 0.7, the m2-Hückel
surface fares worse. This breakdown can be rationalized. The
m2 model is most accurate when comparing structures with
comparable coordination number. It has been proven to give
qualitative and semiquantitative energies when contrasting
one alloy structure with another. It is not as useful when
comparing the two coordinate linear chain structure found for
c/a� 0.6 to the twelve and fourteen coordinate fcc and bcc
structures. The m2-Hamiltonian becomes inaccurate exactly in
region where the energy isosbestic points also deteriorate.

We now consider the binary alloys within the same model.
In Hückel theory there are two types of atomic parameters:
the Coulombic integrals, which model the electronegativity of
the atoms, and the Slater exponents, which model the atomic
size. In the series of compounds W, TaRe, and HfOs the
differences in the electronegativity between constituent
atoms is expected to be more dominant than size factors.
We therefore vary only the Coulombic parameters, keeping
the Slater exponents constant throughout. Thus we consider
the following model calculation. We shift the Coulombic
integrals for the valence s, p, and d orbitals of one atom type
so that they lie 6 eV higher than their counterparts in the other
atom type. This will have two effects on the m2-Hückel
energies. As we use the Wolfsberg ± Helmholz approximation,
off-diagonal matrix elements will become smaller in value.
Secondly, as the interaction between two orbitals at different
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energies is inversely proportional to the original difference in
orbital energies, bonding energies will also become smaller.
The net result is that a tight-binding theory going from a
metallic-covalent system to a more ionic one invariably results
in a softening of the overall energy surface. This is a
phenomenon we have observed in the previously discussed
LDA-DFT calculations. The question still remains as to how
one should determine the proportionality constant g, which
controls the relative strengths of the attractive and repulsive
portions of the m2-Hamiltonian. The results previously dis-
cussed in this paper suggest the following approach. If we
require in Hückel theory that there should also be an
isosbestic point at the same distance as that found in the
LDA-DFT calculations, and further require that at large
volumes both the elemental system and the binary systems
have the same m2-Hückel asymptotic energies, we can then
determine both values of g and the average atomic orbital
energy.

In Figure 13 we show that such a model does capture the
overall qualitative results seen earlier in Figures 2 ± 8. There is
a softening of the energy surface in going from more covalent

Figure 13. m2-Hückel electronic energy of 6 eÿ per atom transition metal
compounds in the CsCl structure as a function of the a lattice parameter.

to more ionic systems. The electronic energy surface corre-
sponding to this calculation is shown on the right side of
Figure 12. In comparing the two contour maps in Figure 12 we
can see that the result of the change in Coulombic integrals is
the loss of the local minimum at high c/a ratio with retention
of the global overall minimum for c/a� 1.0. The second
minimum shifts from a value of V/Vmin of 1.6 for DHii� 0 eV to
a larger V/Vmin value for DHii� 6 eV. The former result
matches the findings of the LDA-DFT calculations in Fig-
ure 10. The latter result does not. Nevertheless, it may be seen
that the m2-Hückel results capture many of the essential
features of the LDA-DFT calculations.

We are therefore left with two alternative ways of ration-
alizing the LDA-DFT calculations for W, TaRe, HfOs, and
YIr. One can qualitatively account for the results either with a
Born ± Mayer model or with tight-binding theory. In order to
distinguish between these alternative views, we need to find a
series of compounds for which a tight-binding theory and a
electrostatic model are not in agreement.

Seven electrons per atom systems : While 6 eÿ per atom binary
transition metal alloys are primarily in the bcc structure type,
above 7 eÿ per atom both closest packings and bcc structures
are found. Thus low temperature TiPd, TiPt, VIr, VPt, NbRh,

NbIr, TaIr, CrRh, MoRh, WIr, Tc, and Re, all with 7 ± 7.5 eÿ

per atom, are found in hcp, fcc, dhcp (ªdoubleº hexagonal
close packing), or atomically ordered variants of these
different closest packings.[55, 62, 63] By contrast low-temper-
ature bcc phases or ordered variants of the bcc structure
type include the 7 eÿ per atom REAg (RE� rare earth
element) compounds, all the 7 ± 7.5 eÿ per atom ScM (M�
Group 10 ± 12, except ScZn) and the 7.5 eÿ per atom low-
temperature TiCu, TiAg, ZrAg, HfAg, and HfAu systems.
The first two families form in the ordered bcc structure type
CsCl and the last family is another ordered bcc structure, the
TiCu type.

These results suggest that for small electronegativity differ-
ences between the constituent atoms the closest packed
structures are preferred, while for large electronegativity
differences the bcc arrangement is energetically more stable.
We infer that the metallic-covalent part of the energy favors
closest packing while the ionic energy favors the bcc structure.

Therefore, a study at 7 eÿ per atom systems allows one to
examine the transformation from the metallic-covalent re-
gime to the ionic regime. As in the previous section we
consider the MnHg/CuAu(i) structure type for the 7 eÿ per
atom series Re, WOs, TaIr, and HfPt. We choose this structure
type as in changing the c/a ratio from 1.4 to 1.0 one passes
from the cubic closest packing, which is more stable for small
electronegativity differences between the constituent atoms,
to the CsCl structure, which is more stable for high electro-
negativity differences.[64] In Figure 14 we show the electronic
energy for this series of compounds as a function of the lattice
constant for c/a ratio of 0.8 and 1.2. As in Figure 8, we see that

Figure 14. Total electronic energy of binary transition metal alloys in the
MnHg structure as a function of the a lattice parameter. The ratio between
the c and a axes is fixed at the values of 0.8 (top) and 1.2 (bottom).
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the various surfaces intersect at a common isosbestic point. In
Figure 15 we show the corresponding electronic energy
contour maps. For Re one finds a global minimum at c/a�
1.4; the fcc structure is most stable. It is known experimentally
that Re is indeed most stable as a closest packing. A second

Figure 15. Electronic energies of the 7 eÿ per atom compounds plotted as
contour maps. In the lower right corner a linear combination of the DFT
energy of the covalent Re and the ionic Born ± Mayer energy is shown as an
approximate fit to the DFT energy of HfPt shown in the Figure as HfPtDFT.

shallow minimum is found for c/a ratios less than 1.0. For
the next member of this series of compounds, WOs, the
global minimum is still fcc; however, the local minimum
at c/a� 0.9 is more pronounced. For TaIr, the elements
two groups to the left and to
the right of Re in the periodic
table, this second local mini-
mum, now at c/a� 0.85 is
even more pronounced. The
CsCl structure, in which c/a�
1.0, corresponds to a marked
saddle point. For HfPt these
two minima begin to fuse
together into one common
rather soft energy well. Final-
ly, if we include the next possi-
ble member of the series, YAu,
this now single minimum be-

comes well localized at c/a� 1.0. Indeed, YAu crystallizes in
the CsCl structure type.

We can use this data to assess the two pictures developed in
the previous section for the rationalization of surface shape.
In the first model we consider that the electronic energy is a
linear combination of the Re energy surface, the upper left
diagram in Figure 15 and the Born ± Mayer ionic energy
surface, the upper left diagram of Figure 11. Encouragingly,
we see that the electronic energy surface for the end member
of this series, YAu, resembles qualitatively the Born ± Mayer
surface of Figure 11. Both surfaces have only one minimum
corresponding to the CsCl structure. However, the Born ±
Mayer surface has a greater energy dependence on the c/a
ratio than does the YAu surface. Just as in the previous
section, we can take a linear combination of the Born ± Mayer
energy surface and the non-ionic Re LDA-DFT surface to
produce the electronc energy surface shown in the last
diagram of Figure 15. The qualitative agreement between
the last contour in Figure 15 and the LDA-DFT result for
HfPt is clear. However, it is not possible to simulate WOs and
TaIr surfaces by such a linear combination. For these two
systems the global minimum is at c/a� 1.4 and a local
minimum appears at c/a� 0.85, while c/a� 1.0 corresponds
to a saddle point. As the Re DFT energy surface has a
minimum c/a� 1.4 and the Born ± Mayer energy surface has a
minimum at c/a� 1.0, it is not possible to combine these two
surfaces and find a local minimum at c/a� 0.85.

We now turn to the second model, the m2-Hückel model. We
show on the left side of Figure 16 the energy surface for 7 eÿ

per atom by using the same atomic parameters used in the
previous calculation, in which g was determined again so that
the bcc structure should have a lattice constant of bcc Fe.
There is a reasonable correspondence between the m2-Hückel
results and those for elemental Re. As in the LDA-DFT calcula-
tions, there is a global minimum for c/a� 1.4, a saddle point at
c/a� 1.0, and a very shallow local minimum just below c/a� 1.0.

As in the previous section, we can model different atom
types by shifting the Hückel Coulombic integrals for one atom
type s, p, and d orbitals so that they lie 6 eV higher relative to
the energy of the other atom�s correpsonding atomic orbitals.
In Figure 17, we see the general softening of the electronic
energy as a function of lattice constant this model engenders.
In Figure 16 on the right side we show the corresponding
energy surface contour. Just as was observed for WOs and
TaIr, while the global minimum remains at c/a� 1.4, a second

Figure 16. m2-Hückel energies for transition metal alloys in the MnHg structure type an element (DHii� 0 eV)
and a binary compound (DHii� 6 eV) each with an average of 7 eÿ per atom. The results are in qualitative
agreement with the DFT energies of Re, WOs, and TaIr shown in Figure 15.
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Figure 17. m2-Hückel electronic energy of 7 eÿ per atom transition metal
compounds in the CsCl structure as a function of the a lattice parameter.

pronounced local minimum appears at c/a� 0.85. There is
therefore qualitative agreement between m2-Hückel theory
and the LDA-DFT results for the first members of this series,
Re, WOs, and TaIr. But this same m2-Hückel theory breaks
down for the latter members of the family. This breakdown is
first seen in the use of the Wolfsberg ± Helmholz approxima-
tion. While we can shift the atomic orbitals by 6 eV relative to
one another, even greater shifts would lead to positive
Coulombic integrals for some of the atomic orbitals. Such
positive values are meaningless.

Perhaps more importantly there is a qualitative breakdown
in the m2-Hückel Hamiltonian. In the limit of large differences
in Coulombic integrals, off-diagonal terms in the tight-binding
model tend to zero. Thus, in the limit of an extremely
electropositive element being mixed with an equally electro-
negative one, there is no energy of interaction in the tight-
binding system. Clearly in such a system there must be a
considerable ionic term, as the electronegative atom will have
accumulated electron charge from the electropositive atom.
The solution is clear. One needs to combine elements of the
two pictures to establish a qualitatively persuasive picture of
the electronic energy. The m2-Hückel theory provides infor-
mation for the first members of the series such as Re, WOs,
and TaIr, the Born ± Mayer model is valid for YAu, and a
linear combination of the two is valid for HfPt. These results
suggest the following picture for the bonding in binary third-
row transition metal alloys. The electronic energy can be
thought of qualitatively and semiquantitatively as the sum of
separable metallic-covalent and ionic energies. The pure
metallic-covalent portion of the energy can be modeled by a
tight-binding model such as m2-Hückel theory. The ionic
portion of the energy is more complex. While for large
differences in electronegativity the Born ± Mayer model is
pertinent, for smaller differences one needs to turn to
alternative pictures such as that found in m2-Hückel theory
itself. It should be noted that in Hückel theory one can
separate the energy effects of the metallic-covalent portion
from the ionic effects. For example, one can use a moment
expansion[26] and formally divide the contribution from these
two portions. Therefore, the ionic energy can be expressed as
a separate calculable entity.

Atomic parameter variation : In the previous two sections of
this paper we noted the continued presence of energetic
isosbestic points as one continuously varies the ratio of the
cell parameters. We may also consider the electronic energy as
a function of atomic parameters. Perhaps the simplest system

we can consider is the two atom cell in which the cell axes are
metrically cubic. We can place two atoms into the cell ; the first
atom is placed at the origin, while the second atom is located
at (x,y,1/2) for which x and y are variable. For x� y� 1/2 the
overall structure is the cubic CsCl, while for x� y� 0 the
structure is tetragonal with infinite linear chains of atoms
running in the c direction. Only at values near x� y� 1/2 does
the structure remain a high-coordinate one and only here do
we expect to see marked energetic isosbestic points. In
Figure 18 we show the energy curves for x� y� 0.45 and x�
0.4, y� 0.5 for 6 and 7 eÿ per atom. The energetic isosbestic
points are clear.

Figure 18. DFT energy curves for metrically cubic systems, with one atom
at the origin (0,0,0) and the second one arbitrarily fixed at (x,y,1/2), as a
function of the lattice parameter. For the left two figures, x �0.4 and y�
0.5, while for the right two, x� y� 0.45.

We plot in Figure 19 the total electronic energy surface for
the five 7 eÿ per atom systems: Re, WOs, TaIr, HfPt, and YAu.
It may be seen that all five surfaces have a similar shape. The
energy scale is different. The energy minimum is deeper for
Re and shallowest for YAu.

These results suggest that both the covalent and ionic
energies in these systems have similar energetic surfaces. As
we do not need to a priori deduce the relative contributions of
these two different energies, we may directly model this
surface with either a purely covalent or a purely ionic energy.
These surfaces allow us to find the empirical parameters
necessary to complete the Born ± Mayer expression. The best
Born ± Mayer model fit to the experimentally observed sur-
face is shown in Figure 19. The qualitative agreement between
the Born ± Mayer model and the LDA-DFt model is clear.

It is unfortunately not possible to model these same LDA-
DFT results with m2-Hückel theory. This latter theory breaks
down when comparing such dissimilar coordination environ-
ments, such as the two nearest neighbors per atom structure
for x� y� 0 and the fourteen near-neighbors geometry for
x� y� 1/2.



Energy Isosbestic Points 2652 ± 2662

Chem. Eur. J. 2001, 7, No. 12 � WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2001 0947-6539/01/0712-2661 $ 17.50+.50/0 2661

Figure 19. Energy surfaces for metrically cubic systems with one atom at
the origin (0,0,0) and the second one at (x,y,1/2) as a function of atomic
parameters x and y. At the bottom right corner is the Born ± Mayer energy
surface.

Conclusion

When chemists think of chemical bonds it is generally
supposed that main group bonding is simpler than transition
metal bonding, molecules are easier to study than extended
solids, and low-coordination environments, such as the
tetrahedral or octahedral geometries, are more basic than
the high-coordinate cuboctahedral or anticuboctahedral en-
vironments. One might then suppose the paradigm of the
covalent and the ionic bond would be most effective in the
study of low coordination number main group molecules. In
this paper we find the converse. High-coordination number
transition metal alloys prove to have a particularly trans-
parent form for their covalent-metallic and ionic energies. For
these systems the total electronic energy is a sum of separable
covalent-metallic and ionic energies.

In hindsight we can see some of the factors responsible. In
main group systems both the s and p bands are essential to the
bonding. Furthermore the degree of s and p mixing depends
on whether the geometry is linear, trigonal, or tetrahedral.
Therefore, a binary main group compounda already has four
key parameters, the atomic energes of the two atoms, and
valence s and p orbitals. By contrast transition metal alloys
bonding is dominated by the d orbitals. Binary transition
metal alloys have only two key parameters, the two atomic
valence d orbital energies. Two parameter systems can lead to

just two functions. It is only in cases like this that energy
isosbestic points, like the ones discussed in this paper, are
possible.
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